Abstract

Two liquid crystalline polymers containing an azobenzene or cyanobiphenyl mesogenic side chain that adopt smectic A phases are mechanically mixed at 1:1 mesogen molar ratio at an isotropic phase temperature and then cooled. The resultant binary polymer mixture behaves like a single component as revealed by polarized microscopy observation and differential scanning calorimetry, indicating that the binary mixture forms a fully compatible polymer blend. Moreover, the simple polymer blend unexpectedly leads to a higher-ordered smectic E phase where a herringbone structure is formed with restricted mesogen axis rotation. These results suggest a specific intermolecular interaction between the two mesogens, thereby inducing unusual compatibilized polymer blends and the most ordered liquid crystal (LC) phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.