Abstract

We theoretically analyze resonance processes in an electromagnetic trap (TEM trap) formed by a circularly polarized high-frequency standing field of homogeneous plane waves and a uniform static magnetic field aligned with the direction of wave propagation. The regime of resonance amplification of the trap field by an ensemble of initially nonphased oscillators in the absence of a static magnetic field is described. The regime of resonance acceleration of charges from thermal to relativistic velocities for a bounded particle motion in the presence of a static magnetic field is considered. It is shown that charge oscillations in the trap are similar to flutter in mechanical systems. The efficient energy exchange is stipulated by an M-type interaction mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call