Abstract

In recent years, pepper wilt has emerged as a pivotal constraint on pepper yield augmentation. Bacillus velezensis S3-1, with a wide array of hosts, can be used as both a biocontrol agent and biofertilizer. Nonetheless, the precise mechanisms underpinning its employment in combating pepper wilt remain cloaked in ambiguity. In our study, we found that B. velezensis S3-1 could significantly inhibit Fusarium sp. F1T that caused pepper wilt. S3-1 could effectively inhibit both the growth and germination of F1T conidia, leading to a reduction in the spore germination percentage from 83.2 to 37.1% in vitro experiments. Additionally, leaf detachment experiments revealed that the volatile compounds produced by S3-1 could inhibit the spread of pepper leaf spot area. Moreover, we observed a significant decrease in the content of malondialdehyde (MDA) in pepper treated with S3-1, along with a significant increase in the content of soluble protein, polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) in pepper. Furthermore, RT-PCR analysis showed that the expression of the defense genes CaPR 1 and CaPIN II in pepper after treatment with S3-1 was significantly upregulated, suggesting that S3-1 had the potential to induce systemic resistance in pepper, thereby enhancing its disease resistance. Hence, our findings suggest that S3-1 can be a promising biocontrol agent for managing pepper wilt in modern agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call