Abstract
The molecular mechanisms that underlie the biological effects of low frequency sinusoidal electric fields may involve induced changes in the physical state of charged cell surface receptors. We have used intensified fluorescence video microscopy to study the redistribution of cell surface receptors, including transferrin receptors (TFR) and low density lipoprotein receptors (LDL-R), in response to externally applied alternating current electric fields in the 3 to 23 V/cm range (peak to peak). Redistribution of both TFR and LDL-R was prominent at frequencies of 1 and 10 Hz but negligible at frequencies of 60 and 120 Hz. Application of a 1 Hz, 23 V/cm field for 15 min caused a twofold change in local TFR surface density, whereas application of a 60 Hz, 23 V/cm field resulted in no significant TFR redistribution. The extent of TFR redistribution induced by a 1 Hz field changed by only 20% over the field strength range from 3.5 to 23 V/cm. AC field-induced cell surface receptor migration did not consistently follow electric field lines, suggesting that mechanisms more complex than classical electrophoresis and electroosmosis mediate receptor redistribution. Joule heating and plasma membrane calcium channel activation were shown not to be involved in the mechanism of receptor redistribution. Applied external electric fields may reorganize cytoskeletal and plasma membrane structures, providing pathways for cell surface receptors to migrate anharmonically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.