Abstract
The phenomenon of the finite-temperature induced quantum numbers in fermionic systems with topological defects is analyzed. We consider an ideal gas of two-dimensional relativistic massive electrons in the background of a defect in the form of a pointlike magnetic vortex with arbitrary flux. This system is found to acquire, in addition to fermion number, also orbital angular momentum, spin, and induced magnetic flux, and we determine the functional dependence of the appropriate thermal averages and correlations on the temperature, the vortex flux, and the continuous parameter of the boundary condition at the location of the defect. We find that non-negativeness of thermal quadratic fluctuations imposes a restriction on the admissible range of values of the boundary parameter. The long-standing problem of the adequate definition of total angular momentum for the system considered is resolved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.