Abstract

ABSTRACT The flow of mechanical energy of segmental motion during baseball pitching is poorly understood, particularly in relation to the valgus torque at the elbow which is prone to pitching-related injuries. This study employed an induced power analysis to determine the components of muscle and velocity-dependent torques that contribute to the power of throwing arm segments when the elbow is under valgus load during the arm-cocking phase of pitching. The 3D throwing kinematics and kinetics of 10 adult pitchers were included in this analysis. Pitchers threw with a maximum elbow valgus torque of 73 ± 20 N•m. The trunk flexion and rotation components of the velocity-dependent torque were the greatest contributors to the work of the forearm at −0.53 ± 0.22 J/kg and −0.43 ± 0.21 J/kg, respectively. Approximately 86% of the total energy transferred through the elbow by the velocity-dependent torque was due to trunk motion, which appears to drive the power of accelerating the throwing elbow in valgus. These results support the importance of trunk motion as a key component in the development of elbow torque and ball velocity. Therefore, this study has practical implications for baseball pitchers seeking to minimise injury risk while improving performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.