Abstract

The induced polarization (IP) in rocks and minerals is of significance to the marine controlled-source electromagnetic (CSEM) field. We propose an adaptive finite-element algorithm for the 2.5D frequency-domain forward modeling of marine CSEM that considers the induced polarization. The geoelectrical model is discretized using an unstructured triangular elemental grid that accommodates the complex topography and geoelectrical structures. We use the Cole–Cole model to describe the IP and develop a complex resistivity forward modeling algorithm. We compare the simulation results with published 1D model results and subsequently calculate the electromagnetic field for variable azimuth sources, IP parameters, and topography. Finally, we analyze the IP effect on the marine CSEM field and show that IP of oil reservoirs and topography affects the marine CSEM electromagnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.