Abstract

The pathophysiological mechanisms underlying childhood neurological disorders have remained obscure due to a lack of suitable disease models reflecting human pathogenesis. Using induced pluripotent stem cell (iPSC) technology, various neurological disorders can now be extensively modeled. Specifically, iPSC technology has aided the study and treatment of early-onset pediatric neurodegenerative diseases such as Rett syndrome, Down syndrome, Angelman syndrome. Prader-Willi syndrome, Friedreich's ataxia, spinal muscular atrophy (SMA), fragile X syndrome, X-linked adrenoleukodystrophy (ALD), and SCN1A gene-related epilepsies. In this paper, we provide an overview of various gene delivery systems for generating iPSCs, the current state of modeling early-onset neurological disorders and the ultimate application of these in vitro models in cell therapy through the correction of disease-specific mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.