Abstract

We aimed to perform a preliminary study of the association between induced pluripotent stem cell (iPS)-related genes and biological behavior of human colorectal cancer (CRC) cells, and the potential for developing anti-cancer drugs targeting these genes. We used real-time reverse transcriptase polymerase chain reaction (RT-PCR) to evaluate the transcript levels of iPS-related genes NANOG, OCT4, SOX2, C-MYC and KLF4 in CRC cell lines and cancer stem cells (CSCs)-enriched tumor spheres. NANOG was knockdowned in CRC cell line SW620 by lentiviral transduction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, plate colony formation, and a mouse xenograft model were used to evaluate alterations in biological behavior in NANOG-knockdown SW620 cells. Also, mock-knockdown and NANOG-knockdown cells were treated with 5-fluorouracil (5-FU) and survival rate was measured by MTT assay to evaluate drug sensitivity. A significant difference in the transcript levels of iPS-related genes between tumor spheres and their parental bulky cells was observed. NANOG knockdown suppressed proliferation, colony formation, and in vivo tumorigenicity but increased the sensitivity to 5-FU of SW620 cells. 5-FU treatment greatly inhibited the expression of the major stemness-associated genes NANOG, OCT4, and SOX2. These results collectively suggest an overlap between iPS-related genes and CSCs in CRC. Quenching a certain gene NANOG may truncate the aggressiveness of CRC cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call