Abstract

Splicing factor proline/glutamine-rich (SFPQ) is expressed in induced pluripotent stem cells (iPSCs), which are reported to orchestrate hypoxic injury responses and release extracellular vesicles (EVs). Therefore, this study sought to explore the role of iPSC-derived EVs carrying SFPQ in hypoxia-induced injury to retinal Müller cells. We induced oxygen-glucose deprivation/reoxygenation (OGD/R) in Müller cells. SFPQ was overexpressed or knocked down in iPSCs, from which EVs were extracted. Müller cells were co-cultured with EVs, and the results indicated that SFPQ protein was transferred into retinal Müller cells by iPSC-derived EVs. We identified an interaction of SFPQ with HDAC1 in retinal Müller cells. Specifically, SFPQ recruited HDAC1 to downregulate HIF-2α by regulating its acetylation. The in vitro studies suggested that iPSC-derived EVs, SFPQ or HDAC1 overexpression, or HIF-2α silencing diminished cell injury and apoptosis but elevated proliferation in retinal Müller cells. The in vivo studies indicated that iPSC-derived EVs containing SFPQ curtailed apoptosis of retinal Müller cells, thus alleviating retinal ischemia/reperfusion (I/R) injury of rat model. Taken together, iPSC-derived EVs containing SFPQ upregulated HDAC1 to attenuate OGD/R-induced Müller cell injury via downregulation of HIF-2α.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.