Abstract

We previously reported that dendritic cells (DCs) transduced with the full-length tumor-associated antigen (TAA) gene induced TAA-specific cytotoxic T lymphocytes (CTLs) to elicit antitumor responses. To overcome the issue of quantity and quality of DCs required for DC vaccine therapy, we focused on induced pluripotent stem cells (iPSCs) as a new tool for obtaining DCs and reported efficacy of iPSCs-derived DCs (iPSDCs). However, in clinical application of iPSDC vaccine therapy, further enhancement of the antitumor effect is necessary. In this study, we targeted mesothelin (MSLN) as a potentially useful TAA, and focused on the ubiquitin-proteasome system to enhance antigen-presenting ability of iPSDCs. The CTLs induced by iPSDCs transduced with MSLN gene (iPSDCs-MSLN) from healthy donors showed cytotoxic activity against autologous lymphoblastoid cells (LCLs) expressing MSLN (LCLs-MSLN). The CTLs induced by iPSDCs transduced ubiquitin-MSLN fusion gene exhibited higher cytotoxic activity against LCLs-MSLN than the CTLs induced by iPSDCs-MSLN. The current study was designed that peripheral T-cell tolerance to MSLN could be overcome by the immunization of genetically modified iPSDCs simultaneously expressing ubiquitin and MSLN, leading to a strong cytotoxicity against tumors endogenously expressing MSLN. Therefore, this strategy may be promising for clinical application as an effective cancer vaccine therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call