Abstract

BackgroundPhotodynamic therapy (PDT) has become an advantageous therapeutic approach for the treatment of select cancers and microbial infections. PDT generates toxic reactive oxygen species as an end product of the interaction between the photosensitizer and light with an appropriate wavelength. Toluidine blue ortho is a photosensitizer that is commonly used in the photodynamic treatment of bacterial infection and a promising photosensitizer for cancer treatment. This study aims to evaluate the potential photo-cytotoxicity of toluidine blue ortho-mediated photodynamic therapy on PC-3 prostate cancer cells. MethodsIn this study toluidine blue ortho-mediated photodynamic therapy was assessed on PC-3 cancer cells with various photosensitizer concentrations and light energy densities of the 655-nm diode laser. MTT analysis was used for the determination of the cytotoxicity on the cells and viability/cytotoxicity assay was used for live/dead cell staining after the applications. The mechanism of this application was further analyzed with the determination of intracellular reactive oxygen species and nitric oxide release. ResultsThe light applications and the photosensitizer alone did not inhibit the cell viability of PC-3 cells. 20 J/cm2 laser energy density together with 100 μM photosensitizer concentration resulted in maximum cancer cell death with a rate of approximately 89 %. The level of intracellular reactive oxygen species increased with the increasing parameters of the applications that resulted in more cell death. ConclusionThis study showed the successful anticancer activity of toluidine blue ortho upon irradiation with 655 nm of laser light against PC-3 cancer cells and it was mediated with the production of reactive oxygen species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call