Abstract

A study was initiated to transfer genes for stem- and leaf-rust resistance from a chromosome (designated 6Ag) of Agropyron elongatum (Host) Beauv to a homoeologous chromosome (6D) of wheat (Triticum aestivum L. aestivum group) by inducing pairing between 6Ag and 6D in the absence of the Ph gene on wheat chromosome 5B. Plants monosomic for SB, 6D and 6Ag were crossed with Chinese Spring nullisomic-5B tetrasomic-5D or with Chinese Spring monosomic or trisomic for SB with an induced mutation, phlb, of the Ph locus. Tests of 282 offspring in the seedling stage for reaction to the stem rust pathogen, Puccinia graminis Pers. f. sp. tritici Eriks. &E. Henn. race 56 or 15B-2, were used to identify 70 plants with 6Ag, which was transmitted through 25% of the female gametes. Meiotic observations on 51 of these plants indicated that six were monosomic for 6D and 6Ag, but lacked an entire 5B or had 5B with the phlb mutation. The frequency of metaphase I cells with pairing between 6D and 6Ag averaged 4.94% in three plants that were nullisomic for 5B and 2.48% in two plants that had a single dose of 5B with the phlb mutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.