Abstract

BackgroundAlterations in expression and activity of cardiac Na+/Ca2+ exchanger (NCX1) have been implicated in the pathogenesis of heart failure. Methods and ResultsUsing transgenic mice in which expression of rat NCX1 was induced at 5 weeks of age, we performed transverse aortic constriction (TAC) at 8 weeks and examined cardiac and myocyte function at 15–18 weeks after TAC (age 23–26 weeks). TAC induced left ventricular (LV) and myocyte hypertrophy and increased myocardial fibrosis in both wild-type (WT) and NCX1-overexpressed mice. NCX1 and phosphorylated ryanodine receptor expression was increased by TAC, whereas sarco(endo)plasmic reticulum Ca2+-ATPase levels were decreased by TAC. Action potential duration was prolonged by TAC, but to a greater extent in NCX1 myocytes. Na+/Ca2+ exchange current was similar between WT-TAC and WT-sham myocytes, but was higher in NCX1-TAC myocytes. Both myocyte contraction and [Ca2+]i transient amplitudes were reduced in WT-TAC myocytes, but restored to WT-sham levels in NCX1-TAC myocytes. Despite improvement in single myocyte contractility and Ca2+ dynamics, induced NCX1 overexpression in TAC animals did not ameliorate LV hypertrophy, increase ejection fraction, or enhance inotropic (maximal first derivative of LV pressure rise, +dP/dt) responses to isoproterenol. ConclusionsIn pressure-overload hypertrophy, induced overexpression of NCX1 corrected myocyte contractile and [Ca2+]i transient abnormalities but did not aggravate or improve myocardial dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.