Abstract

We study a two-dimensional heterostructure comprised of a monolayer of the magnetic insulator chromium triiodide (CrI$_3$) on a superconducting lead (Pb) substrate. Through first-principles computation and a tight-binding model, we demonstrate that charge transfer from the Pb substrate dopes the CrI$_3$ into an effective half-metal, allowing for the onset of a gapless topological superconductivity phase via the proximity effect. This phase, in which there exists a superconducting gap only in part of the Fermi surface, is shown to occur generically in 2D half-metal-superconductor heterostructures which lack two-fold in-plane rotational symmetry. However, a sufficiently large proximity-induced pairing amplitude can bring such a system into a fully-gapped topological superconducting phase. As such, these results are expected to better define the optimal 2D component materials for future proposed TSC heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.