Abstract
Structural, morphological, optical and magnetic properties of chemically synthesized Indium-doped BaSnO3 (BSO) nanostructures were investigated. XRD results indicated cubic structure from Rietveld refinements and FT-IR studies confirmed the characteristic vibrations for all doped compounds. The presence of oxygen vacancies were derived from the defect-induced Raman modes. Surface morphological studies by HR-SEM showed a significant change from pseudo-cuboids to mixed rods. The presence of oxygen vacancies, oxidation states and elements (Ba, Sn, O and In) were studied by X-ray Photoelectron spectroscopy. UV–Vis and Photoluminescence studies demonstrated a decreasing tendency in bandgap values and the presence of defect states. Interesting defect sites and F-centres were probed by Electron paramagnetic resonance studies. A transition from diamagnetic to ferromagnetic behaviour observed from room temperature magnetic measurements was explained based on F-centre exchange interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.