Abstract

Providing instruction cues on body motions using stimulations has the potential to induce sensory reweighting dynamics. However, there are currently very few quantitative investigations on the difference in the induced effects on the sensory reweighting dynamics between stimulation methods. We therefore investigated the difference in the induced effects of electrical muscle stimulation (EMS) and visual sensory augmentation (visual SA) on sensory reweighting dynamics during standing on a balance board. Twenty healthy participants controlled their posture to maintain the board horizontally in the balance-board task, which included a pre-test without stimulation, a stimulation test, and a post-test without stimulation. The EMS group (n = 10) received EMS to the tibialis anterior or soleus muscle based on the board tilt. The visual SA group (n = 10) received visual stimuli via a front monitor based on the board tilt. We measured the height of the board marker and calculated the board sway. Before and after the balance-board task, the participants performed static standing with their eyes open and closed. We measured postural sway and calculated the visual reweighting. The visual reweighting showed a strong negative correlation with the balance board sway ratio between the pre- and stimulation tests in the EMS group and a strong positive correlation with that in the visual SA group. Moreover, for those who reduced the balance board sway in the stimulation test, the visual reweighting was significantly different between the stimulation methods, demonstrating that the induced effect on sensory reweighting dynamics is quantitatively different depending on which method is used. Our findings suggest that there is an appropriate stimulation method to change to the targeted sensory weights. Future investigations on the relationship between sensory reweighting dynamics and stimulation methods could contribute to the proposal and implementation of new training methods for learning to control the target weights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.