Abstract

Paths P 1,…,P k in a graph G = (V,E) are said to be mutually induced if for any 1 ≤ i < j ≤ k, P i and P j have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to test whether a graph G with k pairs of specified vertices (s i ,t i ) contains k mutually induced paths P i such that P i connects s i and t i for i = 1,…,k. This problem is known to be NP-complete already for k = 2, but for n-vertex claw-free graphs, Fiala et al.gave an n O(k)-time algorithm. We improve the latter result by showing that the problem is fixed-parameter tractable for claw-free graphs when parameterized by k. Several related problems, such as the k -in-a-Path problem, are shown to be fixed-parameter tractable for claw-free graphs as well. We prove that an improvement of these results in certain directions is unlikely, for example by noting that the Induced Disjoint Paths problem cannot have a polynomial kernel for line graphs (a type of claw-free graphs), unless NP ⊆ coNP/poly. Moreover, the problem becomes NP-complete, even when k = 2, for the more general class of K 1,4-free graphs. Finally, we show that the n O(k)-time algorithm of Fiala et al.for testing whether a claw-free graph contains some k-vertex graph H as a topological induced minor is essentially optimal by proving that this problem is W[1]-hard even if G and H are line graphs.KeywordsLine GraphInterval GraphPolynomial KernelDisjoint PathGraph ClassThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.