Abstract

We consider the conformally-invariant coupling of topologically massive gravity to a dynamical massless scalar field theory on a three-manifold with boundary. We show that, in the phase of spontaneously broken Lorentz and Weyl symmetries, this theory induces the target space zero mode of the vertex operator for the string dilaton field on the boundary of the three-dimensional manifold. By a further coupling to topologically massive gauge fields in the bulk, we demonstrate directly from the three-dimensional theory that this dilaton field transforms in the expected way under duality transformations so as to preserve the mass gaps in the spectra of the gauge and gravitational sectors of the quantum field theory. We show that this implies an intimate dynamical relationship between T-duality and S-duality transformations of the quantum string theory. The dilaton in this model couples bulk and worldsheet degrees of freedom to each other and generates a dynamical string coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.