Abstract

Specific conformational effects have been reported for amphipathic model peptides upon binding of defined hydrophobic domains to nonpolar stationary phases during reversed-phase high performance liquid chromatography (RP-HPLC). Such induced conformations are found to be especially pronounced for peptides that are amphipathic in an alpha-helical conformation. Such induced amphipathic conformations resulted in substantially later elution than predicted using amino acid-based retention coefficients. In the present study, the induced conformational behavior of model peptides observed during RP-HPLC was correlated with their secondary structure as determined by circular dichroism (CD) spectroscopy in both aqueous solution and C18-mimetic environments. The experimental retention times of the peptides studied were found to correlate with their CD spectra in the presence of lipids, whereas a poor correlation was observed with their CD spectra in the presence of trifluoroethanol. A new approach was developed to evaluate the induction of secondary structure in peptides due to interactions at aqueous/lipid interfaces, which involves the measurement of the CD ellipticities of peptides bound to a set of C18-coated quartz plates. An excellent correlation was found in this environment between the RP-HPLC retention times and CD ellipticities of the bound peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call