Abstract

Water circulation in storage tanks significantly impacts water quality in distribution networks since old water tends to have low residual chlorine concentrations that are insufficient to neutralize microbial regeneration. Their large capacity and long residence times result in uneven mixing, which can accelerate the disinfectant decay and the formation of potentially carcinogenic disinfection by-products. The phenomenon is strongly related to the tank inflow conditions, since there are no active mixing devices. This paper presents a comprehensive analysis of the flow dynamics in circular storage tanks using a three-dimensional computational fluid dynamics model. The main motivation is that the inflow—which mixing processes rely on—strongly influences the circulations. The numerical analysis provided includes a thorough investigation of interest in understanding flow dynamics for two inflow configurations: (i) the plunging jet modelling and comparison with published experimental data and (ii) the submerged jet as an improvement measurement for these storage tanks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call