Abstract

An investigation entitled “Induced chlorophyll mutations in bell pepper (Capsicum annuum L. var. grossum)” was conducted during kharif (summer-rainy season) 2012 and 2013 at Experimental farm of the Department of Vegetable Science and Floriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, H.P., India. Healthy seeds of California Wonder of bell pepper were exposed to physical mutagen Gamma rays using 60CO as a source of radiation at Mutation Breeding Centre, Department of Biotechnology, BARC Trombay, Mumbai and chemical mutagen EMS (Ethyl Methane Sulphonate) to obtain the spectrum and frequency of chlorophyll mutations in M2 generation. The M1 generation was produced from these mutagen treated seeds. Several unique and interesting chlorophyll and viable mutants were obtained in M2 generation. In M2 generation, gamma rays induced higher proportion of chlorophyll mutants then EMS. A progressive increase in mutation frequency of chlorophyll mutations was observed with increasing doses/concentrations. Four different types of chlorophyll mutants namely xantha, yellow xantha, chlorina and viridis were induced. Out of these mutants, chlorina and viridis were most frequent and were produced even in lower doses/concentrations while yellow xantha was least frequent and produced only in higher doses. The highest frequency of chlorophyll mutations (18.8 %) was reported in the 22 kR of gamma dose, while the lowest (0.80 %) frequency of chlorophyll mutations was found in the treatment of 1.0 % EMS. There was a dose dependent increase in the spectrum and frequency of chlorophyll mutations. These chlorophyll mutants induced by gamma radiation and EMS could be used in mutation breeding programme for inducing viable mutations for improvement of bell pepper varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.