Abstract

Particle-in-cell simulation is used to illustrate induced chirp in the laser wake-field generation experiment. The evolution of the laser pulse characteristics and the wake-field amplitude is investigated numerically. The local frequency of the laser pulse is influenced during wake-field excitation. The numerical result shows that the negative Gaussian chirp profile is the mainly induced chirp throughout the laser pulse. Hence, the induced negative Gaussian chirp has a significant influence on wake-field generation and consequently on the acceleration gradient in the wake-field acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.