Abstract

Exposure of a conducting porous material to an electric field in electrolytes induces an electric dipole, which results in capacitive charging of cations and anions at opposite poles. In this letter, we investigate a novel desalination method using this induced-charge capacitive deionization (ICCDI). To do this, we devise a microscale ICCDI platform that can visualize in situ ion concentrations, pH shifts, and fluid flows, and study ion transport dynamics and desalination performances compared to conventional CDI with unipolar / bipolar connections. Similar ion concentration and fluid flow characteristics were observed in Ohmic, limiting, and over-limiting regimes, but variations in desalination performance trends were noted based on the number of stacks. In a single cell, ICCDI generates a higher electric field at the opposite poles of porous electrodes than simple conducted electrodes in CDIs with unipolar/bipolar connections, leading to superior salt removal and/or lower ionic current at a given applied voltage. This marks a clear contrast from CDI with bipolar connection, which lacks any advantage over CDI with unipolar connection in a single cell. These metrics of ICCDI however deteriorated as the stack number increased, likely due to short-circuiting between the dipoles. As a result, ICCDI in current form shows higher desalination efficient than conventional CDIs with low stack numbers (< 6), so we offer the scale-up module by repeating 4-stack ICCDI units. Our study enhances comprehension of ion transport dynamics and desalination performance in ICCDI, and the results could aid in the development of ICCDI for energy/cost-efficient desalination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call