Abstract

Photocatalytic conversion of carbon dioxide (CO2) is a promising strategy for both renewable solar energy storage and carbon emission reduction. Forming multicarbon products in CO2 photocatalytic reduction remains very difficult, due to the kinetic barriers of CC coupling. In this study, we introduce surface pentavalent tungstic (W5+) species in nonstoichiometric tungsten oxides via carbothermal reduction of commercial WO3 powder, achieving photocatalytic CO2 conversion with an aldehyde selectivity of 35% at a total normal CO2 conversion rate of 1.8 µmol·gcat−1·h−1. The as-prepared nonstoichiometric tungsten oxides exhibit improved band structures and electron transport properties, and the W5+ surface species with oxygen vacancies play a pivotal role in facilitating CC coupling of key intermediates. In-depth carbothermal reduction at an elevated temperature (880 °C) delivers more tetravalent W4+ species, decreasing the CO and aldehyde production rates. This work provides fundamental information to facilitate CC coupling in CO2 photoreduction via the introduction of surface active species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call