Abstract

The mechanism study on behaviors of cells influenced by biomaterial surface properties can provide profound guidances for functional tissue engineering scaffolds design. In this study, regulation of integrin-mediated cell–substrate interactions using rat osteoblasts incubated on PHA films was investigated. Compared with tissue culture plate (TCP), poly-3-hydroxybutyrate (PHB), copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) and copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx), osteoblasts inoculated on a terpolymer of 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxyhexanoate (PHBVHHx) were found to have higher apoptosis rates. Several integrin subunits in osteoblasts grown on PHBVHHx showed altered expressions. Simultaneously, extracellular matrics (ECM) were also remodeled on the material surface. Osteoblasts showed a higher expression of integrin subunit β3 and αv on PHBVHHx films compared with that on TCP. On the other hand, less vitronectin, osteopontin and fibronectin, the main ligands for integrin β3 were expressed and deposited in ECM. The unligated integrin β3 could recruit caspase-8 to the membrane and activate its downstream signaling which was proven by the caspase-8 activation assay. It was therefore concluded that the induced apoptosis of osteoblasts on PHBVHHx was regulated by recruitment of caspase-8 to the unligated integrin β3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.