Abstract

Epidemiological, clinical and animal studies indicate non-steroidal anti-inflammatory drugs (NSAIDs) to be chemopreventive for colorectal cancer. The best established target for NSAIDs are the two isoforms of cyclooxygenase (COX), a key enzyme in the biosynthesis of prostaglandins. Recent investigations using human colorectal tumor cell lines have focused on the cellular and molecular mechanisms potentially underlying the chemopreventive effect of NSAIDs. These studies have used 'traditional' NSAIDs and their metabolites which either do not inhibit COX, are non-selective for the COX isoforms or selectively inhibit COX-1 over COX-2, and recently developed NSAIDs that are highly selective for COX-2. In vitro, apoptosis is the dominant anti-proliferative effect of each of these classes of NSAID and sensitivity to NSAID-induced apoptosis increases with the malignant potential of the tumor cells. Limited in vivo evidence backs up these findings. Cell cycle arrest also contributes to the in vitro growth inhibitory effect of traditional NSAIDs. The induction of apoptosis by NSAIDs may result from the inhibition of the COX isoforms but other as yet undefined paths to NSAID-induced apoptosis clearly exist. A member of each class of NSAID is under trial as a chemopreventive agent for colorectal cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call