Abstract
Heart rate turbulence (HRT) is a prognostic parameter for risk stratification in patients suffering from coronary artery disease. The aims of this study were to demonstrate the feasibility of quantifying HRT in mice, both in long-term electrocardiograms (ECGs) as well as after extrastimulus pacing, and to analyse its characteristics. We performed long-term ECG recordings using implanted telemetric chips and electrophysiological (EP) investigations, using transvenously inserted EP catheters, in healthy mice. Heart rate turbulence was calculated using the established turbulence onset (TO) and slope (TS) algorithm. After spontaneous ventricular premature complexes (VPCs), we found a negative TO (-2.2 ± 7.5%) and positive TS (15.5 ± 18.3 ms/RR interval). Electrophysiological investigations revealed positive values for TO (0.6 ± 1.1%) and TS (6.5 ± 2.9 ms/RR interval) after extrastimulus pacing maneuvers. The shortening of the extrastimuli coupling intervals delivered during EP investigations significantly influenced TO (r = 0.57; P = 0.01): shorter coupling intervals provoked more positive TO values. Mice display both spontaneous and induced HRT. In terms of TO, VPCs generated by extrastimulus pacing are significantly dependent on the coupling interval. Determining HRT in mice is feasible and provides insight into basic mechanisms of blood pressure regulation, which is realized by the baroreflex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.