Abstract

Abstract We investigated the Phase Change Memory (PCM) capabilities of In-doped Sb nanowires (NWs) with diameters of (20-40) nm, which were self-assembled by Metalorganic Chemical Vapor Deposition (MOCVD) via the vapor-liquid-solid (VLS) mechanism. The PCM behavior of the NWs was proved, and it was shown to have relatively low reset power consumption (~ 400 μW) and fast switching capabilities with respect to standard Ge-Sb-Te based devices. In particular, reversible set and reset switches by voltage pulses as short as 25 ns were demonstrated. The obtained results are useful for understanding the effects of downscaling in PCM devices and for the exploration of innovative PCM architectures and materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.