Abstract

It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization. To address this challenge, in this paper, we propose a sound source localization algorithm based on probabilistic neural network, namely Generalized cross correlation Classification Algorithm (GCA). Experimental results for adverse environments with high reverberation time T60 up to 600ms and low SNR such as -10dB show that, the average azimuth angle error and elevation angle error by GCA are only 4.6 degrees and 3.1 degrees respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.