Abstract

Abstract. With the increasing number of large buildings and more frequent indoor activities, indoor location-based service has expanded. Due to the complicated internal passages of large public buildings and the three-dimensional interlacing, it is difficult for users to quickly reach the destination, the demand of indoor paths visualization increases. Isikdag (2013), Zhang Shaoping (2017), Huang Kejia (2018) provided navigation services for users based on path planning algorithm. In terms of indoor path visualization, Nossum (2011) proposed a “Tubes” map design method, which superimposed the channel information of different floors on the same plane by simplifying the indoor corridor and the room. Lorenz et al (2013) focused on map perspective (2D/3D) and landmarks, developed and investigated cartographic methods for effective route guidance in indoor environments. Holscher et al (2007) emphasized using the landmark objects at the important decision points of the route in indoor map design. The existing studies mainly focused on two-dimensional plane to visualize the indoor path, lacking the analysis of three-dimensional connectivity in indoor space, which makes the intuitiveness and interactivity of path visualization greatly compromised. Therefore, it is difficult to satisfy the wayfinding requirements of the indoor multi-layer continuous space. In order to solve this problem, this paper aims to study the characteristics of the indoor environment and propose a path visualization method. The following questions are addressed in this study: 1) What are the key characteristics of the indoor environment compared to the outdoor space? 2) How to visualize the indoor paths to satisfy the users’ wayfinding needs?

Highlights

  • Compared to the outdoor environment, the indoor environment has specific spatial characteristics: 1) For the space division boundary, the outdoor paths have clear boundary contrasting with other elements, users can usually use only the planned network

  • Isikdag (2013), Zhang Shaoping (2017), Huang Kejia (2018) provided navigation services for users based on path planning algorithm

  • The existing studies mainly focused on two-dimensional plane to visualize the indoor path, lacking the analysis of three-dimensional connectivity in indoor space, which makes the intuitiveness and interactivity of path visualization greatly compromised

Read more

Summary

Introduction

Compared to the outdoor environment, the indoor environment has specific spatial characteristics: 1) For the space division boundary, the outdoor paths have clear boundary contrasting with other elements, users can usually use only the planned network. Due to the complicated internal passages of large public buildings and the three-dimensional interlacing, it is difficult for users to quickly reach the destination, the demand of indoor paths visualization increases. Isikdag (2013), Zhang Shaoping (2017), Huang Kejia (2018) provided navigation services for users based on path planning algorithm.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call