Abstract

Flavoring agents added to the e-cigarettes and hookah tobacco have increased the attractiveness of novel nicotine products. Many widely used flavorings are carbonyls, which are toxic to humans. In an indoor environment, residents can be exposed to such harmful flavorings previously emitted to the surrounding environment, through a process termed thirdhand exposure. The recent discovery of a large volume of indoor reservoirs emphasizes the importance of indoor partitioning, which is responsible for thirdhand exposure. Indoor partitioning can be expressed with partitioning coefficients, such as Henry's law solubility constant (H). However, reliable H values for many key flavorings are currently lacking. To better understand their environmental behavior, this study experimentally determined the effective Henry's law constant (Hcps,eff) using the inert gas stripping (IGS) method. Further, the influence of the hydration process for target flavorings was quantified using proton nuclear magnetic resonance (1H NMR) spectroscopy. We found that hydration of α-dicarbonyls (diacetyl and 2,3-pentanedione) enhanced their Hcps,eff from their intrinsic Henry's law constant (Hcps) by a factor of 3.52 and 2.88, respectively. The two-dimensional partitioning plots were employed to simulate the indoor phase distribution and evaluate the pathways of human exposure. Our findings show that the indoor partitioning of many harmful flavorings is highly sensitive to temperature and the size of indoor reservoirs, indicating that residents are likely to experience third-hand exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call