Abstract
This paper is devoted to the investigation of the relationship between concentrations of traffic-related pollutants at pedestrian level in the street and indoor pollutant concentrations inside different rooms of different floors of a standard building. CFD modelling covering the whole urban environment, including the interior of a target building, is used to explicitly simulate wind flow and pollutant dispersion outdoors and indoors. A wide range of scenarios considering different percentage and location of open windows and different wind directions is investigated. A large variability of indoor pollutant concentrations is found depending on the floor and configuration of the open/closed windows, as well as the wind direction and its incidence angle. In general, indoor pollutant concentrations decrease with floor, but this decrease is different depending on the scenario and the room investigated. For some conditions, indoor concentrations higher than the spatially averaged values in the street (up to a ratio of 1.4) are found in some rooms due to the high pollutant concentrations close to open windows. This behavior may lead, on average, to higher exposure inside the room than outside although, in general, indoor pollutant concentrations are lower than that found in the street at pedestrian level. Results are averaged for all scenarios and rooms being the average ratio between indoor and oudoor concentrations 0.56 ± 0.24, which is in accordance with previous studies in real buildings. This paper opens to a unified approach for the assessment of air quality of the total indoor and outdoor environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.