Abstract

We consider the problem of real-time sensing and tracking the location of a moving cart in an indoor environment. To this end, we propose to combine position information obtained from an inertial navigation system (INS) and a short-range wireless reference system that can be embedded into a future "network of things". The data produced by the INS lead to accurate short-term position estimates, but due to the drifts inherent to the system, these estimates perform loosely after some time. To solve this problem, we also generate estimates with a wireless reference system. These radio-based estimates can be used as accurate long-term position estimates because their accuracy improves over time as the channel fading can be averaged out. We use a data fusion algorithm based on Kalman filtering with forward/backward smoothing to optimally combine the short- and long-term position estimates. We have implemented this localization system in a real-time testbed. The measurement results, which we obtained using the proposed method, show considerable improvements in accuracy of the location estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call