Abstract

Now-a-days, computer systems are important for artificial vision systems to analyze the acquired data to realize crucial tasks, such as localization and navigation. For successful navigation, the robot must interpret the acquired data and determine its position to decide how to move through the environment. This paper proposes an indoor mobile robot visual-localization and navigation approach for autonomous navigation. A convolutional neural network and background modeling are used to locate the system in the environment. Object detection is based on copy-move detection, an image forensic technique, extracting features from the image to identify similar regions. An adaptive threshold is proposed due to the illumination changes. The detected object is classified to evade it using a control deep neural network. A U-Net model is implemented to track the path trajectory. The experiment results were obtained from real data, proving the efficiency of the proposed algorithm. The adaptive threshold solves illumination variation issues for object detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.