Abstract
Indoor scenes are closely related to human life and contain rich geometric and semantic information. Dividing indoor spaces from data is crucial for multiple applications, such as navigation and digital twins. However, achieving this task is challenging. Traditional indoor space division methods only represent buildings, floors, and rooms to some extent, lacking semantic descriptions of indoor elements and their spatial arrangements. To divide an indoor space more finely, a novel indoor space subdivision method is proposed in this paper. Our method leverages the flexible space subdivision framework (FSS) to categorize indoor space into free navigation subspace, object subspace, and functional subspace. To define functional subspaces, we present a taxonomy for the spatial layout patterns of common indoor elements (like tables, chairs, ceilings, walls, floors, etc.). Then, we introduce scene graphs to represent indoor 3D scenes, where each node represents an indoor element and each edge encodes the spatial relationship between the elements. Finally, a node classification network is proposed to segment indoor scene into subspaces and predicts their (semantic) functions. We select 9 buildings of Matterport3D and 6 areas in S3DIS and merge them to form our dataset for training and testing our method. Experiments yield good results with up to 90.42% accuracy and 85.28% F1-scores in overall space subdivision. Moreover, compared with the various graph node classification networks, our method has achieved the best performance in indoor space subdivisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.