Abstract

Concentrating Photovoltaic technology is a promising option in power generation using the photovoltaics compared to the conventional flat PV system. This study investigates the performance of a high concentrated photovoltaic single solar cell module attached to a multi-layered microchannel heat sink. The system has been tested the first time experimentally both at indoor and outdoor conditions. The indoor characterization of the system investigated the effect of varying the number of the layers of the heat sink and the flow rate of the fluid electrically and thermally. The experiments show that varying the number of the heat sink layers from 1-layer to 3-layers increase the maximum electrical generation by 10% and reduces the cell temperature by 3.15 °C under the same fluid flow rate of 30 ml/min. The outdoor experiments show the maximum output electrical generation of the system of 4.60 W and the short circuit current of 1.96 A. The maximum solar cell temperature was maintained below 61 °C where the extracted heat of the system was 12.85 W which represents of 74.9% of the total generated power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.