Abstract

Indoor air quality (IAQ) has been identified by the Environmental Protection Agency (EPA) as one of the most urgent top five environmental risks to public health. Numerous studies have documented that sick building syndrome (SBS) is surprisingly common even in buildings without widespread complaints and its relationship with hypersensitivity disease are often associated with exposure to high concentration of airborne microbial organisms. To contribute to knowledge on IAQ, this study evaluates the levels and composition of bacterial and fungal contamination of different offices in a tertiary institution in South-western Nigeria. A cross sectional design was used to compare the indoor airborne microbial load of three categories of offices within the institution premises: the central administrative (CA), academic (AC) and work and maintenance (W&M) offices. Indoor temperature (oC) and relative humidity (%) of the respective offices were measured using a 5-in-1 multi-tester N21FR made in China and categorized into comfort and high levels. Air samples were collected using a TE-10-890 Andersen single stage microbial air sampler and the total counts per cubic metre were compared with the American Industrial Hygiene Association guideline (AIHA). Data were analyzed using descriptive statistics, t-test, Spearman’s rank correlation and regression analysis. Offices in CA recorded the highest mean indoor Total Bacteria Count (TBC) of 22.6 ± 12.2cfu/m3 as compared to W&M (18.3 ± 10.4cfu/m3) and AC (15.6 ± 8.4cfu/m3) p 0.05. The indoor TBC and TFC of the categories of offices were found to be lower than the AIHA guideline limit. The number of persons at the point of sampling was found to significantly predict the level of indoor TBC, p<0.01. The most isolated bacteria were Staphylococcus spp., Streptococcus spp. and Micrococcus spp., whereas Cladosporium spp., Aspergillus spp. were the most abundant fungi isolates. The present study implicated population as a major source of microbial contamination in the office environment. Adequate knowledge about indoor air quality in terms of microbial contamination and its implication on health should be provided to staff of the institution in the hierarchy of control measures to mitigate the levels of indoor airborne microorganisms.

Highlights

  • Indoor air quality (IAQ) refers to the air quality within and around buildings and structures, especially as it relates to the health and comfort of building occupants

  • Old and deteriorating furniture were found to be present in more offices at the AC and central administrative (CA) as compared to work and maintenance (W&M)

  • All the offices sampled at the CA and AC premises were found with dust on furniture

Read more

Summary

Introduction

Indoor air quality (IAQ) refers to the air quality within and around buildings and structures, especially as it relates to the health and comfort of building occupants. An employee who is on sick leave due to health problems caused by indoor air affects productivity of the company This could result in the loss of work hours by the staff, medical costs, and increase in other employees’ workload [4]. Research has shown that workers in buildings with adequate air quality have reduced rates of symptoms related to poor air quality [7]. This effect ranges from impacts on long-term job performance to short-term absence including, distractions and discomforts that impair cognitive thinking [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call