Abstract
Indoor air quality ((IAQ) in classrooms was associated with the daily exposure of school-age children who are particularly vulnerable to air pollutants exposure, while few data exist to evaluate classroom indoor air quality nationwide in China. The subsample of the CIEHS 2018 study was performed in 66 classrooms of 22 primary schools nationwide in China. Temperature, relative humidity, PM2.5, PM10, CO2, CO, formaldehyde concentrations, bacteria and fungi were detected in all classrooms by using the instruments that meet the specified accuracy. The ratios of indoor to outdoor (I/O) of PM2.5 were calculated in each classroom to identify whether the indoor environment the pollutants comes from outdoors. The indoor PM2.5, PM10, CO, HCHO, bacteria and fungi GM concentration are 47.40 μg/m3, 72.91 μg/m3, 0.37 mg/m3, 0.02 mg/m3, 347.51 CFU/m3 and 362.76 CFU/m3, respectively. We observed that there were 66.5%, 52.6%, 22.4%, 1.8%, and 9.6% of the classrooms that exceeded the guideline values of PM2.5, PM10, CO2, HCHO, and bacteria, respectively. It should be attention that all of the classroom's PM2.5 concentrations in Shijiazhuang and Nanning, PM10 concentrations in Nanning, CO2 concentration in Lanzhou were exceeded the suggested values. Bacteria contamination in Shijiazhuang's classrooms is also serious. All classroom CO concentrations meet the requirement. The results indicated that classroom indoor PM2.5 was significantly positively correlated with indoor PM10 and CO2, while was negative correlated with temperature, CO, and fungi. Our results suggest that indoor air pollution in classrooms was a severe problem in Chinese primary schools. It is necessary to strengthen ventilation in the classroom to improve indoor air quality. What's more, a healthy learning environment should be created for primary school students.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.