Abstract

Airborne particles containing pathogens such as bacteria (e.g., M. tuberculosis) or virions (e.g., influenza or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) can cause infections. It has been speculated that the outflow from indoor air purifiers with a directional outlet could entrain and spread pathogen-containing aerosol particles. To date, only the case of indoor air purifiers with a directional outflow has been considered, and here we investigate an indoor air purifier with a circumferential outflow diffuser—an alternative design solution that is already commercially available. We measured the airflow velocity at two different angles to the surface of the circumferential outflow diffuser and two blower speeds. We visualized in scattered light the deflection of a vertical mist spray cone from a sneeze-simulating nebulizer parallel to the side of the air purifier. We found a significant difference in airflow velocities for different angles to the circumferential outflow diffuser: 0.01–0.02 m/s for 0° vs. 0.01–0.65 m/s for 45° at 1 m distance. We observed no significant deflection of the sneeze-simulating spray cone at the minimum blower speed and a 5 cm deflection at the maximum speed. The deflection of the sneeze-simulating spray mist particles by the tested indoor air purifier with the circumferential outflow, under the experimental conditions, is low relative to the recommended safer distances between people in indoor spaces. We conclude that indoor air purifiers with circumferential outflow diffusers have a lower potential to spread infectious aerosols in indoor spaces compared to devices with unidirectional outflow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.