Abstract

Activity size distribution of the short-lived radon progeny in indoor air was measured continuously over several weeks. Two different measurement techniques were used: a direct measurement with a low-pressure Berner cascade impactor for attached fraction of 214Pb and 214Bi (≥100 nm) and an indirect determination based on measurement with a wire screen diffusion battery (unattached fraction 0.5–5 nm, 218Po, 214Pb). In parallel, the meteorological parameters like temperature, humidity were registered. Measured activity size distribution of radon progeny can be approximated by a sum of three log-normal distributions modes (nucleation, accumulation and coarse). The greatest activity fraction was adsorbed on aerosol particles in the accumulation size range (100–1000 nm) with activity median aerodynamic diameters (AMADa) and geometric standard deviations (GSD a ) values of 250–500 nm, and 1.5–3.5, respectively. The influence of the weather conditions on the activity of the accumulation particles was not significant. In contrast to the results of measurements a small but significant fraction of the radon progeny (average value 5 %) was attached to coarse particles (>1000 nm). This fraction varied between 0 and 10 %. On the other hand, although the amount of unattached activities not more 10 % of the total activity, but is considered to yield about 50 % of the total radiation dose. The mean thermodynamic equivalent diameters of 218Po and 214Pb were determined to be 1.28 and 1.30 nm with relative mean geometric standard deviations of 1.30 and 1.24, respectively. Based on the obtained results of radon progeny size distributions (attached and unattached), the total deposition fractions of the human lung were evaluated by using a lung deposition model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call