Abstract

This research discusses the development of a part of speech (POS) tagging system to solve the problem of word ambiguity. This paper presents a new method, namely maximum entropy markov model (MEMM) to solve word ambiguity on the Indonesian dataset. A manually labeled “Indonesian manually tagged corpus” was used as data. Furthermore, the corpus is processed using the entropy formula to obtain the weight of the value of the word being searched for, then calculating it into the MEMM Bigram and MEMM Trigram algorithms with the previously obtained rules to determine the part of speech (POS) tag that has the highest probability. The results obtained show POS tagging using the MEMM method has advantages over the methods used previously which used the same data. This paper improves a performance evaluation of research previously. The resulting average accuracy is 83.04% for the MEMM Bigram algorithm and 86.66% for the MEMM Trigram. The MEMM Trigram algorithm is better than the MEMM Bigram algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.