Abstract

We use all-atom molecular dynamics simulations on a massive scale to compute the standard binding free energy of the 13-residue antimicrobial peptide indolicidin to a lipid bilayer. The analysis of statistical convergence reveals systematic sampling errors that correlate with reorganization of the bilayer on the microsecond timescale and persist throughout a total of 1.4 ms of sampling. Consistent with experimental observations, indolicidin induces membrane thinning, although the simulations significantly overestimate the lipophilicity of the peptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.