Abstract

Benzo[ a]pyrene (BaP) and N-nitrosodimethylamine (NDMA) are carcinogens and indirect acting mutagens. A naturally occurring dietary indole, indole-3-carbinol (I-3-C), has been shown to decrease the incidence of aryl hydrocarbon induced neoplasia in experimental animals. We examined the relationship between the ability of I-3-C to alter the rate of carcinogen oxidation and its ability to decrease the rate of covalent binding of carcinogen metabolites to DNA and protein. We found that I-3-C inhibited the covalent binding of NDMA oxidation products to DNA in vitro in proportion to its ability to inhibit carcinogen metabolism. Pretreatment of mice by gavage with I-3-C resulted in no change in the rate of aryl hydrocarbon hydroxylase or NDMA demethylase in hepatic post-mitochondrial supernatant. However, this pretreatment resulted in a 60–90% decrease in the ability of carcinogen oxidative metabolites to bind covalently to DNA or protein in vitro. Similarly, in in vivo experiments, gavage with I-3-C, followed by gavage with BaP or NDMA, resulted in a 63–85% decrease in covalent binding to macromolecules, with no concomitant change in carcinogen metabolism. The results suggest that the in vivo administration of I-3-C may confer protection for hepatic macromolecules against covalent binding of the metabolites of these two indirect acting mutagens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.