Abstract

BackgroundA new series of indole-carbohydrazide-phenoxy-1,2,3-triazole-N-phenylacetamide hybrids 11a–o was designed based on molecular hybridization of the active pharmacophores of the potent α-glucosidase inhibitors. These compounds were synthesized and evaluated against α-glucosidase.MethodsThe 15 various derivatives of indole-carbohydrazide-phenoxy-1,2,3-triazole-N-phenylacetamide scaffold were synthesized, purified, and fully characterized. These derivatives were evaluated against yeast α-glucosidase in vitro and in silico. ADMET properties of the most potent compounds were also predicted.ResultsAll new derivatives 11a–o (IC50 values = 6.31 ± 0.03–49.89 ± 0.09 µM) are excellent α-glucosidase inhibitors in comparison to acarbose (IC50 value = 750.0 ± 10.0 µM) that was used as a positive control. Representatively, (E)-2-(4-((4-((2-(1H-indole-2-carbonyl)hydrazono)methyl) phenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N-(4-methoxyphenyl)acetamide 11d with IC50 = 6.31 µM against MCF-7 cells, was 118.8-times more potent than acarbose. This compound is an uncompetitive inhibitor against α-glucosidase and showed the lowest binding energy at the active site of this enzyme in comparison to other potent compounds. Furthermore, computational calculations predicted that compound 11d can be an orally active compound.ConclusionAccording to obtained data, compound 11d can be a valuable lead compound for further structural development and assessments to obtain effective and potent new α-glucosidase inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call