Abstract
Malaria, one of the most severe global diseases, infects nearly 300 million people causing death of about a million population annually. Herein we have reported design, synthesis and biological evaluation of potent antimalarial compounds that target melatonin hormone as a potential pathway for the inhibition of the parasite proliferation. The molecular design is based on melatonin and indole based synthetic and natural antimalarial agents. The library of compounds was accessed via an iodine catalyzed one pot organocatalytic ring opening of 1-aryltetrahydro-β-carbolines followed by in situ imination of the resulting C2-aroyl intermediates. Inhibition of parasite growth progression (3D7 and chloroquine resistant RKL9 strain) in the presence of the tested compounds indicated that few of the compounds substantially inhibited the parasite survival and the most potent compound 2j blocked the parasite growth at the trophozoite stage. Compound 2j also disrupted the melatonin induced synchronization of the parasite culture in vitro. The active compounds were screened against melatonin receptor MT1 to demonstrate substantial binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.