Abstract

The Cassia (Leguminosae) genus has attracted a lot of attention as a prolific source of alkaloids and chromones with diverse structures and biological properties. The aim of this study is to screen the antiviral compounds from Cassia alata. The extract of the stem bark of this plant was separated using silica gel, MCI, ODS C18, and Sephadex LH-20 column chromatography, as well as semi-preparative HPLC. As a result, three new indole alkaloids, alataindoleins A–C (1–3); one new chromone, alatachromone A (4); and a new dimeric chromone-indole alkaloid, alataindolein D (5) were isolated. Their structures were determined by means of HRESIMS and extensive 1D and 2D NMR spectroscopic studies. Interestingly, alataindolein D (5) represents a new type of dimeric alkaloid with an unusual N-2−C-16’ linkage, which is biogenetically derived from a chromone and an indole alkaloid via an intermolecular nucleophilic substitution reaction. Compounds 1–5 were tested for their anti-tobacco mosaic virus (TMV) and anti-rotavirus activities, and the results showed that compounds 2–4 showed high anti-TMV activities with inhibition rates of 44.4%, 66.5%, and 52.3%, respectively. These rates were higher than those of the positive control (with inhibition rate of 32.8%). Compounds 1 and 5 also showed potential anti-TMV activities with inhibition rates of 26.5% and 31.8%, respectively. In addition, compounds 1–5 exhibited potential anti-rotavirus activities with therapeutic index (TI) values in the range of 9.75~15.3. The successful isolation and structure identification of the above new compounds provided materials for the screening of antivirus drugs, and contributed to the development and utilization of C. alata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.