Abstract

Destruction in intestinal barrier is concomitant with the intestinal diseases. There is growing evidence that tryptophan-derived intestinal bacterial metabolites play a critical role in maintaining the balance of intestinal mucosa. In this study, the Caco-2/HT29 coculture model was used to evaluate the effect of indole-3-propionic acid (IPA) on the intestinal barrier and explore its underlying mechanism. We found that IPA increased transepithelial electrical resistance and decreased paracellular permeability which was consistent with the increase in tight junction proteins (claudin-1, occludin, and ZO-1). Furthermore, IPA strengthened the mucus barrier by increasing mucins (MUC2 and MUC4) and goblet cell secretion products (TFF3 and RELMβ). Additionally, IPA weakened the expression of LPS-induced inflammatory factors. These discoveries provide new views for understanding the improvement of intestinal barrier by gut microbial metabolites of aromatic amino acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.