Abstract

BackgroundIndole-3-acetic acid (IAA) is produced by microorganisms and plants via either tryptophan-dependent or tryptophan-independent pathways. Herein, we investigated the optimisation of IAA production by Streptomyces fradiae NKZ-259 and its formulation as a plant growth promoter to improve economic and agricultural development.ResultsThe maximum IAA yield achieved using optimal conditions was 82.363 μg/mL in the presence of 2 g/L tryptophan after 6 days of incubation. Thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis of putative IAA revealed an RF value of 0.69 and a retention time of 11.842 min, comparable with the IAA standard. Regarding product formulation, kaolin-based powder achieved a suspension rate of 73.74% and a wetting time of 80 s. This carrier exhibited good shelf life stability for NKZ-259, and the cell population did not decrease obviously over 4 months of storage at 4 °C. In vivo analysis of plant growth promotion showed that tomato seedlings treated with kaolin powder containing NKZ-259 cells displayed a significant increase in root and shoot length of 7.97 cm and 32.77 cm, respectively, and an increase in fresh weight and dry weight of 6.72 g and 1.34 g. Compared to controls, plant growth parameters were increased almost it two-fold.ConclusionOptimising the culture conditions resulted in an almost four-fold increase in IAA secretion by NKZ-259 cells. The results clearly demonstrate that S. fradiae NKZ-259 holds great potential for plant growth promotion and IAA production. Furthermore, kaolin-based powder is an effective carrier for NKZ-259 cells and may be useful for commercial applications.

Highlights

  • Indole-3-acetic acid (IAA) is produced by microorganisms and plants via either tryptophan-dependent or tryptophan-independent pathways

  • The present study focused on optimising the parameters affecting IAA production by S. fradiae NKZ-259 and assessing formulation for commercial applications

  • OFAT optimisation experiments showed that the highest IAA production under optimal medium and culture conditions was 20.46 μg/mL using Gause’s No.1 medium in the presence of 2 g/L tryptophan, this was used in subsequent experiments

Read more

Summary

Introduction

Indole-3-acetic acid (IAA) is produced by microorganisms and plants via either tryptophan-dependent or tryptophan-independent pathways. Actinomycetes are Gram-positive, plant growth-promoting rhizobacteria that promote plant growth either directly or indirectly [1]. These microbes secrete antibiotics, vitamins and enzymes [2] including indole-3-acetic acid (IAA) [3] and play a key role in the decomposition of organic matter [4] and phosphorus solubilisation [5]. Cell growth and antibiotic production can be improved by manipulating culture nutritional and physical parameters. Numerous cultivation parameters including pH, carbon source, nitrogen source, and L-tryptophan supplementation can affect bacterial growth and IAA yield. Designing an appropriate fermentation medium is of critical importance in the production of secondary metabolites [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call