Abstract
Recent evidences have linked indole-3-acetic acid (I3A), a gut microbiota-derived metabolite from dietary tryptophan, with the protection against non-alcoholic fatty liver disease (NAFLD). However, the values of I3A on mitochondrial homeostasis in NAFLD have yet to be analyzed. In this study, we verified that I3A alleviated dietary-induced metabolic impairments, particularly glucose dysmetabolism and liver steatosis. Importantly, we expanded the understanding of I3A further to enhance mitochondrial oxidative phosphorylation in the liver by RNA-seq. Consistently, I3A restored the deficiency of mitochondrial respiration complex (MRC) capacity in palmitic acid (PA)-induced HepG2 without initiating oxidative stress in vitro. These changes were dependent on peroxisome proliferator-activated receptor γ coactivator 1 (PGC1)-a, a key regulator of mitochondrial biogenesis. Silencing of PGC1a by siRNA and pharmacologic inhibitor SR-18292, blocked the restoration of I3A on mitochondrial oxidative phosphorylation. In addition, pre-treatment of I3A guarded against the deficiency of MRC capacity. In conclusion, our findings uncovered that I3A increased hepatic PGC1a expression, contributing to mitochondrial respiration improvement in NAFLD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.